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ABSTRACT

We study m-dimensional real submanifolds M with (m − 1)-dimensional

maximal holomorphic tangent subspace in complex projective space. On

these manifolds there exists an almost contact structure F which is natu-

rally induced from the ambient space and in this paper we study the

condition h(FX, Y )−h(X, FY ) = g(FX, Y )η, η ∈ T⊥(M), on the almost

contact structure F and on the second fundamental form h of these sub-

manifolds and we characterize certain model spaces in complex projective

space.

1. Introduction

The purpose of the present paper is to study CR submanifolds of maximal CR

dimension with certain condition on the naturally induced almost contact struc-

ture and on the second fundamental form of these submanifolds. Namely, let
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Mm be a real submanifold of the complex manifold (M
m+p

, g) with complex

structure J . If, for any x ∈ M , the tangent space Tx(M) of M at x satisfies

dimR(JTx(M) ∩ Tx(M)) = m− 1, then M is called a CR submanifold of maxi-

mal CR dimension. It follows that there exists a unit vector field ξ normal to M

such that JTx(M) ⊂ Tx(M) ⊕ span{ξx}, for any x ∈ M . A real hypersurface

is a typical example of a CR submanifold of maximal CR dimension and the

generalization of some results which are valid for real hypersurfaces to CR sub-

manifolds of maximal CR dimension may be expected. In the real hypersurface

case and in particular when M is a Kähler manifold, many results have been

obtained. See, for example, [16] for the fundamental definitions and results

and for further references. On the other hand, for arbitrary codimension, less

detailed results are known but may be expected. For example, we refer to [7],

[6], [8] and [9].

Let M be a real hypersurface of an almost Hermitian manifold M . In [21] Y.

Tashiro showed that in this case M is equipped with an almost contact metric

structure F naturally induced by the almost Hermitian structure on M . This

has been a fertile field for many authors, in particular when M is a complex

space form. See [3], [11] and [18] for more details and further references. Above

all, M. Okumura, S. Montiel and A. Romero gave a geometric meaning of the

commutativity of the second fundamental tensor A of the real hypersurface of

a complex space form and its induced almost contact structure F ([15], [18]).

Above all, M. Kon ([13]) proved that a connected complete real hypersurface

in a complex projective space which satisfies the condition FA + AF = kF for

some constant k 6= 0 is congruent to some model spaces of type B. Namely,

although the complex projective space and complex hyperbolic space can be

regarded as the simplest after the spaces of constant curvature, they impose

significant restrictions on the geometry of their hypersurfaces. For instance,

they do not admit umbilic hypersurfaces (a fact first noted in [23]) and their

geodesic spheres do not have constant curvature. H. B. Lawson ([14]) was the

first to exploit the idea of regarding the complex projective space C P
m+1

2 as

a projection from the sphere Sm+2 with fiber S1 to study a hypersurface in

C P
m+1

2 by lifting it to an S1-invariant hypersurface of the sphere. Further,

Takagi’s classification given in [20] of the homogeneous real hypersurfaces of

complex projective space was important in its own right, but it also identified

a whole list of hypersurfaces, gave them names (type A1, type B, etc.), and
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focused attention on them. Other geometers began to study them and to derive

new characterizations of various subsets of the list. For example, much of the

work has involved finding sufficient conditions for a hypersurface to be one of

the “standard examples,” characterized by the fact that they have two or three

distinct constant principle curvatures. We recall here that the description of the

only complete real hypersurfaces in complex projective space with three distinct

constant principal curvatures as tubes is given in [3]. In [10] we continued

this study concerning CR submanifolds of maximal CR dimension in complex

Euclidean space and we obtained a complete classification of those which satisfy

certain condition on the almost contact structure naturally induced from the

ambient space and on the second fundamental form. In this paper our purpose

is to study the case when the ambient manifold is a complex projective space

and to prove

Main Theorem: Let M be a complete m-dimensional CR submanifold of

maximal CR dimension of a complex projective space C P
m+p

2 . If the condition

h(FX, Y ) − h(X, FY ) = g(FX, Y )η, η ∈ T⊥(M)

is satisfied, where F and h are the induced almost contact structure and the

second fundamental form of M , respectively, then F is a contact structure and

M is congruent to a geodesic sphere or to a tube over the complex quadric,

or there exists a geodesic hypersphere of C P
m+p

2 such that M is its invariant

submanifold.

2. CR submanifolds of maximal CR dimension of a Kähler manifold

Let M be an (m + p)-dimensional Kähler manifold with Kähler structure (J, ḡ)

and let M be an m-dimensional real submanifold of M with the immersion ı

of M into M , whose metric g is induced from ḡ in such a way that g(X, Y ) =

g(ıX, ıY ), where X, Y ∈ T (M).

Next, it is known that, for any x ∈ M , the subspace Hx(M) = JTx(M) ∩

Tx(M), is the maximal J-invariant subspace of the tangent space Tx(M) at

x. It is called the holomorphic tangent space to M at x. In general, the di-

mension of Hx(M) varies with x (see [8], for example), but if the subspace

Hx(M) has constant dimension for any x ∈ M , the submanifold M is called

the Cauchy-Riemann submanifold or briefly CR submanifold and the constant

complex dimension of Hx(M) is called the CR dimension of M ([17], [24]). It
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is well-known that a real hypersurface is one of the typical examples of CR

submanifolds whose CR dimension is m−1

2
, where m is the dimension of a hy-

persurface. It is easily seen that if M is a CR submanifold in the sense of

Bejancu’s definition given in [1], M is also a CR submanifold in the sense of

the above-given definition. In the case when M is a CR submanifold of CR

dimension m−1

2
, these definitions coincide. On the other hand, when the CR

dimension is less than m−1

2
, the converse is wrong. We refer to [8] for more

details and examples of CR submanifolds of maximal CR dimension.

In the sequel we consider CR submanifolds of maximal CR dimension. Con-

sequently M is odd-dimensional and there exists a unit vector field ξx normal

to Tx(M) such that JTx(M) ⊂ Tx(M) ⊕ span{ξx}, for any x ∈ M . Defining a

skew–symmetric (1, 1)-tensor F from the tangential projection of J by

(1) JıX = ı FX + u(X)ξ,

for any X ∈ T (M), the Hermitian property of ḡ and J implies that the subbun-

dle T⊥
1 (M) = {η ∈ T⊥(M)|g(η, ξ) = 0} is J-invariant, from which it follows

(2) Jξ = −ıU, g(U, X) = u(X), U ∈ T (M).

Therefore, we denote the orthonormal basis of T⊥(M) by ξ, ξ1, . . . , ξq,

ξ1∗ , . . . , ξq∗ , from now on, where ξa∗ = Jξa and q = (p − 1)/2.

Further, applying J to (1), (2) and comparing the tangential and the normal

part to M , we obtain

F 2X = −X + u(X)U,(3)

u(FX) = 0 , FU = 0.(4)

We continue by recalling some general preliminary facts concerning subman-

ifolds. Let us denote by ∇ and ∇ the Riemannian connection of M and M ,

respectively. They are related by the following well-known Gauss formula

(5) ∇ıX ıY = ı∇XY + h(X, Y ) ,

where h denotes the second fundamental form

(6) h(X, Y ) = g(AX, Y )ξ +

q
∑

a=1

{g(AaX, Y )ξa + g(Aa∗X, Y )ξa∗},

and A, Aa, Aa∗ , a = 1, . . . , q, are the shape operators corresponding to the

normals ξ, ξa, ξa∗ , respectively.
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Since the ambient manifold is a Kähler manifold, differentiating covariantly

relation (1), using (2), (5), and Weingarten formula ∇ıXξ = −ıAX + DXξ =

−ıAX +
∑q

a=1
{sa(X)ξa +sa∗(X)ξa∗}, for ξ, where D is the normal connection

induced from ∇ in the normal bundle of M , and comparing the tangential and

the normal part, we get

(7)
(∇Y F )X = u(X)AY − g(AY, X)U , (∇Y u)(X) = g(FAY, X) ,

∇XU = FAX .

As stated before, the submanifold M is odd-dimensional and dim M =m =

2l + 1. If on M there exists a function ρ which takes a value zero nowhere,

satisfying

(8) du(X, Y ) = ρg(FX, Y ),

for any tangent vector fields X, Y, that is, if for the Kähler form ω of M we

have du(X, Y ) = ρω(ıX, ıY ) = ρ(ω ◦ ı)(X, Y ) , then, since F has rank 2l, we

easily obtain u∧ (du)l 6= 0. This shows that u is a contact form of M and M

is a contact manifold. In this sense, we call the submanifold M , whose induced

almost contact structure (F, u, U, g) satisfies (8), a contact submanifold. From

now on we suppose that the dimension of the contact submanifold M is greater

than 3. Then, from (7) and (8), we easily see that the almost contact structure

(F, u, U, g) is contact if and only if there exists a function ρ which takes a value

zero nowhere and satisfies a relation:

(9) FA + AF = ρF .

3. CR submanifolds of complex projective space satisfying certain

condition

In this section we study CR submanifolds Mm of maximal CR dimension of a

Kähler manifold, especially of a complex projective space C P
m+p

2 , which satisfy

the condition

(10) h(FX, Y ) − h(X, FY ) = g(FX, Y )η, η ∈ T⊥(M)

for all X, Y ∈ T (M). Since F is skew-symmetric endomorphism acting on

T (M), using relation (6) and setting η = ρξ+
∑q

a=1
(ρaξa+ρa∗

ξa∗), q = (p−1)/2,
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it follows that relation (10) is equivalent to

AFX + FAX = ρFX,(11)

AaFX + FAaX = ρaFX, Aa∗FX + FAa∗X = ρa∗

FX, a = 1, . . . , q.(12)

Using relation (9) it follows that CR submanifolds of maximal CR dimension

of Kähler manifolds which satisfy the condition (10) are contact submanifolds.

Let us begin with several important consequences of the condition (10).

Lemma 1 ([10]): Let M be an m-dimensional CR submanifold of maximal CR

dimension of a Kähler manifold M . If the condition (11) is satisfied, then U

is an eigenvector of the shape operator A with respect to distinguished normal

vector field ξ , at any point of M .

Lemma 2 ([10]): Let M be an m-dimensional CR submanifold of maximal CR

dimension of a Kähler manifold M . If the condition (10) is satisfied, it follows

ρa = 0, ρa∗

= 0, namely

(13) FAa + AaF = 0, FAa∗ + Aa∗F = 0, a = 1, . . . , q.

Remark 1: In the rest of the paper we will assume that ρ 6= 0, since the case

ρ = 0 reduces the condition (10) to h(FX, Y ) − h(X, FY ) = 0, which we have

considered in [5]. Moreover, in [7], Lemma 3.1., the authors proved that ρ 6= 0

is constant.

When the ambient manifold is a Kähler manifold, differentiating covariantly

relation Jξa = ξa∗ and using (1), (2) and Weingarten formulas, we obtain

sa∗(X) = g(AaX, U), sa(X) = −g(Aa∗X, U),(14)

Aa∗X = FAaX − sa(X)U, AaX = −FAa∗X + sa∗(X)U,(15)

for X ∈ T (M) and a = 1, . . . , q. Further, using (13), (3), (4) and (14), we

obtain

AaU = sa∗(U)U, Aa∗U = −sa(U)U,(16)

sa(X) = sa(U)u(X), sa∗(X) = sa∗(U)u(X).(17)
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If, moreover, M is a complex space form, the Codazzi equations for normal

vectors ξa, become

(∇XAa)Y − (∇Y Aa)X(18)

=sa(Y )AX − sa(X)AY +

q
∑

b=1

{sab(X)AbY − sab(Y )AbX}

+

q
∑

b=1

{sab∗(X)Ab∗Y − sab∗(Y )Ab∗X}, a = 1, . . . , q − 1,

where sab, sab∗ are the coefficients of the normal connection D. We also obtain

the equation similar to (18), for normal vectors ξa∗ , a∗ = 1, . . . , q−1 and where

the corresponding coefficients of the normal connection sa∗b, sa∗b∗ satisfy

(19) sa∗b = −sab∗ , sa∗b∗ = sab.

Also, using Ricci-Khüne formula, Gauss equation, (1) and (2), we obtain

ḡ(R(ıX, ıY )ξa, ξ) =g(AAaX, Y ) − g(AaAX, Y ) + (∇Xsa)(Y )

− (∇Y sa)(X) +

q
∑

b=1

[sb(Y )sba(X)(20)

+ sb∗(Y )sb∗a(X) − sb(X)sba(Y ) − sb∗(X)sb∗a(Y )] = 0.

Using Gauss and Weingarten formulas, a routine, but long, calculation, yields

the following extremely useful result.

Proposition 1: Let M be a complete m-dimensional CR submanifold of CR

dimension m−1

2
of a complex space form. If the condition (10) is satisfied, then

the distinguished normal vector field ξ is parallel with respect to the normal

connection.

Proof. Let us compute g((∇XAa∗)Y −(∇Y Aa∗)X, U) in the following two ways.

First, differentiating the first equation of (15) and using (7) and (15), we obtain

g((∇XAa∗)Y, U) = (∇XF )g(AaY, U) + g(F (∇XAa)Y, U) − (∇Xsa)(Y )(21)

= −g(AaAX, Y ) + αsa∗(U)u(X)u(Y ) − (∇Xsa)(Y ),
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where AU = αU , after Lemma 1. Reversing X and Y and subtracting thus

yields

(22) g((∇XAa∗)Y − (∇Y Aa∗)X, U)

= g((AAa − AaA)X, Y ) − (∇Xsa)(Y ) + (∇Y sa)(X).

Substituting (18) into (22) and using (20), we obtain

(23) g((AAa − AaA)X, Y ) = 0, for all X, Y ∈ T (M).

Next differentiating the second equation of (16) and using (7) and (11), we

obtain

(24) g((∇XAa∗)Y − (∇Y Aa∗)X, U) + g(Aa∗FAX, Y ) − g(Aa∗FAY, X)

= −X(sa(U))u(Y ) + Y (sa(U))u(X) + sa(U)ρg(FX, Y ),

Further using (11) and (17), relation (24) reads

q
∑

b=1

{sa∗b(X)sb∗(Y ) − sa∗b(Y )sb∗(X) − sa∗b∗(X)sb(Y ) + sab∗(Y )sb(X)}

− g((AaA − AaA)X, Y )

= −X(sa(U))u(Y ) + Y (sa(U))u(X) − ρsa(U)g(FX, Y ).(25)

Moreover, by Lemma 1 and relations (4) and (13), it follows g(AaFAX, U) −

g(AaFAU, X) = 0. Replacing Y by U in relation (24) and using (17), we obtain

(26) X(sa(U)) = U(sa(U))u(X)

−

q
∑

b=1

{sa∗b(X)sb∗(U)−sa∗b∗(X)sb(U)−u(X)(sa∗b(U)sb∗(U)+sa∗b∗(U)sb(U))}.

Combining relation (26) with (25) yields

(27) g((AAa − AaA)X, Y ) = ρsa(U)g(FX, Y ).

Thus (23) and (27) imply sa(U) = 0 and consequently, from (17) we conclude

sa(X) = 0. In entirely the same way, we obtain sa∗ = 0, which completes the

proof.

In the remainder of this section we assume the ambient manifold M to be

the complex projective space.

As a real hypersurface of a Kähler manifold is a typical example of CR sub-

manifolds of maximal CR dimension. First, we recall some known results on
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real hypersurfaces of complex projective space. For a real hypersurface, the

condition (10) reduces to (11) and in this case the shape operator A of the

hypersurface has at most three distinct eigenvalues. Since there exist neither

totally geodesic real hypersurfaces nor totally umbilical real hypersurfaces of

complex projective space ([23]), under the condition (11), the shape operator A

has two or three distinct eigenvalues.

If A has only two distinct eigenvalues, α and λ, then A has the form AX =

λX +(α−λ)u(X)U and FAX +AFX = 2λFX . In this case the real hypersur-

face Mm of C P
m+1

2 is isometric with a geodesic hypersphere M0(m, r) which

is defined by

π

{

(z0, . . . , zl) ∈ C
l+1 : |z0| = cos2 r,

l
∑

j=1

|zj |
2 = sin2 r

}

where l = m+1

2
and π is the Hopf fibration Sm+2 → C P

m+1

2 .

If A has three distinct eigenvalues, α, λ1 and λ2, then the multiplicities of

α, λ1 and λ2 are 1, l − 1 and l − 1, respectively. The distributions defined

by D1 = {X ∈ T (M) : AX = λ1X}, D2 = {X ∈ T (M) : AX = λ2X} satisfy

FD1 = D2, FD2 = D1 and such type of real hypersurfaces of complex projective

space are called real hypersurfaces of type B (see [20]). Consequently, M

is isometric with the model space M(m, t) which is defined by

π

{

(z0, . . . , zl) ∈ C
l+1 :

∣

∣

∣

∣

l
∑

j=0

z2
j

∣

∣

∣

∣

2

= t,
l

∑

j=0

|zj |
2 = 1

}

,

where t is a fixed positive number 0 < t < 1. Cecil and Ryan in [3] proved that

M(m, t) is a tube around the complex quadric.

We continue the study in this section by considering the case when M is a

complete m-dimensional CR submanifold of maximal CR dimension of a com-

plex projective space C P
m+p

2 which satisfies the condition (10). Using Propo-

sition 1 , the first equation of (15) becomes Aa∗ = FAa and, for any tangent

vector Y , we obtain

AaFAY − AFAaY = 0.

Therefore, using (11), (13) and (23), we conclude

(28) ρAaFY − 2AaAFY = 0.

For another eigenvector X , orthogonal to U , with the corresponding eigenvalue

λ, since X can be written as X = FY and AFY = λFY = λX , we can rewrite
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(28) as

(29) (ρ − 2λ)AaX = 0.

Consequently, relation (29) implies that the proof of the Main Theorem falls

naturally into two parts.

Let us first consider the case when ρ 6= 2λ. It follows from (29) that AaX = 0,

for all X ⊥ U . Combining (14) and Proposition 1 gives

g(AaU, Y ) = sa∗(Y ) = 0, for all Y ∈ T (M)

and therefore AaU = 0. Hence, taking into account that AaX = 0, it follows

Aa = 0, a = 1, . . . , q.

In the same manner we can see that Aa∗ = 0, a = 1, . . . , q. We have thus

proved:

Lemma 3: Let M be a complete m-dimensional CR submanifold of maximal

CR dimension of a complex projective space C P
m+p

2 . If the the condition (10)

is satisfied and ρ 6= 2λ, where X is another eigenvector of A, orthogonal to

U , with the corresponding eigenvalue λ, then Aa = 0 = Aa∗ , a = 1, . . . , q,

q = p−1

2
, where A, Aa, Aa∗ are the shape operators for the normals ξ, ξa, ξa∗ ,

respectively.

Making use of this result, we prove

Theorem 1: Let M be a complete m-dimensional CR submanifold of maximal

CR dimension of a complex projective space C P
m+p

2 . If the condition (10) is

satisfied and ρ 6= 2λ, where X is another eigenvector of A, orthogonal to U ,

with the corresponding eigenvalue λ, then there exists a totally geodesic complex

projective subspace C P
m+1

2 of C P
m+p

2 such that M is a real hypersurface of

C P
m+1

2 .

Proof. First, let us define N0(x) = {ξ ∈ T⊥
x (M) : Aξ = 0} and let H0(x) be

the maximal J-invariant subspace of N0(x), that is, H0(x) = JN0(x) ∩ N0(x).

Then, using Lemma 3, it follows that N0(x) = span{ξ1(x), . . . , ξq(x), ξ1∗(x),

. . . , ξq∗(x)}. Moreover, by the second equation of (7), we obtain JN0(x) =

N0(x) and consequently H0(x) = span{ξ1(x), . . . , ξq(x), ξ1∗(x), . . . , ξq∗(x)}.

Hence the orthogonal complement H1(x) of H0(x) in T⊥(M) is spanned by

ξ. Further, it follows from Lemma 1 that ξ is parallel with respect to the

normal connection, and we can apply the codimension reduction theorem for
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real submanifolds of complex projective space ([19]) and conclude that there

exists real (m + 1)-dimensional totally geodesic complex projective subspace of

C P
m+p

2 , such that M is its real hypersurface.

Consequently, since using Theorem 1, the submanifold M can be regarded as

a real hypersurface of C P
m+1

2 and we can apply the results of a real hypersurface

theory, especially [13].

In what follows we denote by ı1 the immersion of M into C P
m+1

2 , and by ı2

the totally geodesic immersion of C P
m+1

2 into C P
m+p

2 . Then, from the Gauss

formula (5), it follows that ∇′

ı1X ı1Y = ı1∇XY + g(A′X, Y )ξ′, where ξ′ is a unit

normal vector field to M in C P
m+1

2 and A′ is the corresponding shape operator.

Thus, by using the Gauss equation and ı = ı2 · ı1, we derive

(30) ∇ı2·ı1X ı2 · ı1Y = ı2∇
′

ı1X ı1Y + h̄(ı1X, ı1Y ) = ı2(ı1∇XY + g(A′X, Y )ξ′),

since C P
m+1

2 is totally geodesic in C P
m+p

2 . Further, comparing relation (30)

with relation (5), it follows that ξ = ı2ξ
′ and A = A′. As C P

m+1

2 is a com-

plex submanifold of C P
m+p

2 , with the induced complex structure J ′, we have

Jı2X
′ = ı2J

′X ′, X ′ ∈ T (C P
m+1

2 ). Thus, from (1) it follows

(31) JıX = ı2J
′ı1X = ıF ′X + ν′(X)ı2ξ

′ = ıF ′X + ν′(X)ξ

and therefore, we conclude that F = F ′ and ν′ = u. Since Kon (see Theorem

3.3. [13]) proved that if for a real hypersurface in complex projective space

with almost contact structure F ′ and second fundamental form A′ the condition

F ′A′ + A′F ′ = kF ′ is fulfilled for some constant k 6= 0, then it is congruent to

M0(m, r) or M(m, t). Combining this with Theorem 1 completes the proof of

Theorem 2: Let M be a complete m-dimensional CR submanifold of maximal

CR dimension of a complex projective space C P
m+p

2 . If the condition (10) is

satisfied and ρ 6= 2λ, where X is another eigenvector of A, orthogonal to U , with

the corresponding eigenvalue λ and F and h are the induced contact structure

and the second fundamental form of M , respectively, then M is congruent to

M0(m, r) or M(m, t).

Finally, let us consider the case when ρ = 2λ. Then, if X is an eigenvector of

A, orthogonal to U , with the corresponding eigenvalue λ, using (11), it follows

AFX = (ρ−λ)FX. Namely, FX is an eigenvector of A with the corresponding

eigenvalue ρ − λ = 2λ − λ = λ. Therefore, the only eigenvalues of A are α and

λ and we can use the following
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Theorem 3 ([7]): Let M be an m(> 2p− 1, p ≥ 2)-dimensional real submani-

fold of a complex projective space C P
m+p

2 with maximal holomorphic tangent

subspace of dimension m−1. If M is a contact submanifold in the sense of (8)

and the normal field ξ is parallel with respect to the normal connection, and

if the shape operator A corresponding to ξ has at most two eigenvalues, then

there exists a geodesic hypersphere S′ of C P
m+p

2 such that M is an invariant

submanifold of S′.

Moreover, on this occasion we do not need the restriction on the dimension,

since in paper [7] it was necessary only for proving that the multiplicity of the

eigenvalue α corresponding to U is one. However, for ρ = 2λ, the multiplicity

of α is always one. Namely, let us suppose that Y ⊥ U is another eigenvector

corresponding to α. Then relation (11) implies that FY is an eigenvector of A

corresponding to ρ− α. As A has only two distinct eigenvalues, ρ − α = λ and

ρ−α = α, both cases imply that A has only one eigenvalue, which is impossible,

since Lemma 3.6. [7] states that if A has only one eigenvalue α, it follows that

M is a complex Euclidean space.

Summarizing this with Theorem 2 completes the proof of the Main Theorem.
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